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Microstrip Lines on Substrates with Segmented
or Continuous Permittivity Profiles

Jean-Fu KiangMember, IEEE

Abstract—The propagation properties of microstrip lines on tor substrate. The permittivity profile of the substrate is a
a substrate with inhomogeneous permittivity and conductivity continuous function of a lateral coordinate.
profiles are analyzed. The eigenmodes in each inhomogeneous In [8], microstrip lines on top of dielectric ridges are studied

layer are obtained by solving an eigen equation. These eigen- ; : . L ,
modes are then used to formulate the Green’s function of the 1Of their propagation and coupling characteristics. The Green'’s

stratified medium. An integral equation is next derived in terms function is derived using the mode-matching technique, and
of the surface current on the strip. Galerkin’s method is then an integral equation based on the current distribution on the
applied to obtain a determinantal equation to be solved for strip surface is solved for the propagation constant. A similar
the propagation constant. The effect of several permittivity and approach with detailed derivation is given in [9] to solve a
conductivity profiles are analyzed. . L - .
_ _ o class of problems with striplines or slotlines embedded in a
Index Terms—Dispersion relation, inhomogeneous substrate, multilayered medium. The task to obtain the eigenmodes in
microstrip line, stratified medium. each layer is laborious in [8] and [9].
In all these works except [7], the permittivity profile in
I. INTRODUCTION each layer is assumed to be a piecewise constant function
. . f the lateral coordinate. Th ntinuou rmittivity profil
OR MICROSTRIP lines deposited on a segmented sup. 1€ ate oord ate. 'he continuous pe y protie
. . . may occur when a microstrip line is deposited on a semicon-
strate, the expressions of potentials (quasi-TEM analys%ﬁjl : . . . )
) . ctor substrate which contains doping zones with a different
or fields (full-wave approaches) in the substrate become mc(){.e .
; ; : i€lectric constant from that of the bulk substrate.
complicated than the expressions in a homogeneous substrat

X ; e . A this paper, a mode-matching technique is combined with
For a substrate with a continuous permittivity profile, explicit_ . . .
. ; . o the integral equation method to study the propagation proper-
forms of eigenmodes are not available. Discretization ap-

proaches like finite difference method, finite element method, - of a single and two sym_rr_le_tncally _coupled microstrip lines
. : . '0fh a substrate. The permittivity profile of the substrate can
or method of lines can be resorted to obtain the potential

: P Bt a piecewise continuous function of the lateral coordinate.
field distributions.

Using the quasi-TEM approximation, the proximity eﬁec{:'rSt’ the' elgenmodes n e'?‘Ch Iaygr are obtamed by s.olvmg a
. . .~ symmetric eigenvalue matrix equation. Reflection matrices are
of a substrate edge on the capacitance of a microstrip li

enclosed by a rectangular metal case has been studied [1], fined across the interfaces between two contiguous layers.

i . . een’s function is derived by inserting current dipoles in the
In [3], a spatial domain moment method is used to calculafe . . o2
' . - ered medium. An integral equation is then formulated to
the capacitance of two microstrip lines separated by a notc . L
express the tangential electric field in terms of the current on

in the middle of the substrate. The notch serves to redut%e strip surface. Galerkin’s method is finally applied to solve

the coupling between these two lines. In [4], a conform% . : :
. ) . . . integral equation for the propagation constant.
mapping technique is derived to calculate the capacitance o

a stripline embedded in a layered medium with rectangular-
shape subdomains.

Using the full-wave approach, a method of lines has beenIn Fig. 1, we show the configuration of a microstrip line
developed to analyze the propagation properties of microstgpbedded in a layer)( of a stratified medium. The whole
lines on a substrate of finite extent or on a substrate wigitructure is uniform in the direction. The dielectric constant
notches [5]. A laterally open structure can be reduced toiraeach layer is a piecewise continuous functionroénd is
closed one by using a coordinate transformation before tiglependent of; andz. Two perfect electric conductor walls
method of lines is applied to solve the propagation constant [@f€ put atr = 0 andz = a to simplify the analysis.

In [7], another method of lines is used to study the propagationFirst, we solve the eigenmodes in an inhomogeneous

properties of coplanar transmission lines on a semicondugedium which extends to infinity in the-z direction. The
normal flux componentd), and B, satisfy the following
second-order ordinary differential equation:
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(71) ‘LLn(I),En(-'E) .= -dn
(Tl + 1) .U'n+1($)v
r=10 61L+1(‘7") r=a

Fig. 1. Geometrical configuration of a microstrip line embedded in a strati-

fied medium consisting of inhomogeneous layers.

and IE,%S is the corresponding eigenvalue. Choose another set
of basis functionsS,(z) = \/2/asin o,z with o, = pr/a.
These basis functions satisfy the orthonormality specification
that (S,(z),S,(z)) = &, The eigenmodep,(z) can be
expressed in terms of,(z) as

N
p=1

Substituting (9) into (8), and taking the inner producﬁgtx)
with the resulting equation, we have

N N
> Mypbyy = k2> Npbny (10)
p=1 p=1

where

where V2 = 5,)_22 + % Assume that the waves propagate

in the y direction with a propagation constahj, 1), can be

expressed as
Do(7) = an(2)pn()c e
n=1

where ¢, (x) is the eigensolution to

() o o) g + @) 0(0) = etn0) - @)

and k2 is the corresponding eigenvalue. Choose one set of
basis functionsS,(z) = \/ep/acosapz With ap, = pr/a
wheree,, = 1 whenp = 0 ande, = 2 whenp # 0. These
basis functions satisfy the orthonormality specification th
(Sp(x), Sq(x)) = 6pg. The inner product is defined over the
interval 0 < = < a. The eigenmode,,(z) can be expressed

in terms of S,(x) as

Dule) = 3 bupSy(a).

p=0

Substituting (4) into (3), and taking the inner productsgfz)

with the resulting equation

N-1 N-1
Z Mapbrp = kr%s Z Nepbrp, 0<g<N-1 (5)
p=0 p=0

where

M
Nop =(Sg(x), ¢ (2)Sp(2)).

ap == (S4(2), T H(@) S} () + (84 (x), w? () S ()

Nep :<gq($)vﬂ_l($)§p($)>- (11)

The eigenvaluesl%,%s and the corresponding eigenfunction
¢n(z) can be solved numerically from (10). The eigenmodes
¢n(x) and ¢, (x) are normalized such that

<¢~)m($)v 6_1(37)(7171(37» = Omn
(m (@), 1™ (@) Pn()) = Smn, (12)

The E, and H,, components can be expressed in term&)of

apd B, as [10]

1ﬂ3Dm+Zw 8B

Ey = Z 2 a o Ynx
= k3, e(z) Oz k2 0z
=1 ik, 9 = iw 9
H, = = Y~ B, — — —D, 13
Y nz::l k2. p(x) Ox —~ k2, 0z (13)

where D,,,. and B,,,, are thenth eigenmode components of

D, and B,, respectively.
Next, consider the fields generated by a line curtg) =
G16(x — 2,)8(2 — 2,)e*¥¥. From Maxwell's equations

= I—yeikyyél(x - xo)é(z - ZO)
W

9 2

The eigenvaluesi?, and the corresponding eigenfunction[vg+u(a:)%u—1(a:)—+w u(w)c(x)} B,(7)

¢n(z) can be solved numerically from (5). Similarljg,. can

be expressed as

oo

Bu(F) =) dn(2)dn(w)e™s

n=1

where ¢,,(x) is the eigensolution to

Oz
= ple®V8(x — 2,)6' (2 — 2,). (14)

The solutions to (14) can be expressed in terms of the
eigenmodes of (3) and (8) as

D, =
= Cikyy(i)t(x) ’ Cil(lZ_ZOl : "(/;:t(xo) (15)
B,
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where
_ [¢*(z) 0O
(Pt(.’L') = =t
L 0 ¢ (a)
B _GZI;~|Z—ZD| 0
6il§'|z—zo| _ ]
0 Cil;';|z—zo|
_ Qwielzzco)‘[‘ffz_l : (Z/(:L'o)
Yi(zo) = _ (16)
L E50()
¢(z) is a column vector with ¢'(z)
pu(x), - on(x)], H(z) is a column vector

1
¢ (x) = [pu(x), -, dn(x)]. F:l*=%l is a diagonal
matrix with the ath diagonal component being*e:1>=,
¢if:l==%l is a diagonal matrix with theath diagonal
component being*«:1===| L . andk,. are related to the
eigenvalues:2, andk2, by k2, = k2, — k2, k2, = k2, — k2.

231

Then,&; and3; can be solved from (20) and (21) to be

g :|:j_— Eﬂl . @iﬁ’lhl . Eul . eif?zhz:| -t
: []_:201 iR p_(z,) + Rry
R Ry - e i(hi==0) P4(20)]
i |:eil_z’zhz . Eul i eil_z’z(hz—zl') . 1/;-1—(370) + eil_;'lhl

'Eul . eii’lhl -]_:201 . eiﬁ’lzl’ b (a:o)} (22)

Using the reflection matrices, the fields in layer)(with
with m > [ can be expressed as

-’ernac = GZkyy(i):n(x) ) [GZISMZM ’ Rﬂrn + C_lemzm:| ’ Brn

Ay = MY [N g (2) - R Ry

+ N (@) - e~Fmam] LB (23)

K. is a diagonal matrixdiag.[ky., -, kx.]. Substituting BY imposing the boundary condition thall,, = A1), and

(15) into (13), we obtain

H,
A, =
E,
where
_ —_—2 = =t/ =—2
— :I:wd)t(a:) : Ks K. kaﬂ ld) (37) Ks
Ny(z) = L, B P
ikye 'V (z) K,  TFwé (z) K, K,
(18)

=2 = —2 . . =
where K, and K, are diagonal matrices witlk, =
=2 . -
diag.[k7 2, - k) and K, = diag.[k; 2, -, k-
Next, assume that a line current is located in laygof a

stratified medium, the fields in layef) (can thus be expressed

as
App =c*993! (2)
. [eiKzlzl—zl’l Ay (@) + et gy 4 em Kz /;l}
(19)

wherez; = z + d;, z; = 2z, + d;, the subscripf indicates that

Ary = A1)y @tz = —d,, we obtain the recursive relation
between the reflection matrices as

=t

ikyy AT iK|z—z 7 = = s — = -1
= eZknyi(aj) . K lz—zl | Palx,) (A7) Rn, :{ |:I 4 e Rﬂ(r+1) . ezls,,+1hT+1:| . Br(r-i—l)

7 iK1 he 5 iK o i1he
_ |:H1’(1’+1)+ .e t1hrgr Rﬂ(r-l—l) .e +1hrp1

~ -1

3, iR rpihett | B iR i1hy
: {|:Hr(r+l)+ ST Ry et R

+fI,,(,,+1)_} -

_ -1
+H +1)_} H,.

— L= — L= —1 =t
T Kyi1h- D Kri1h, D
- [I ettt Ry - ettrnl “} ’ B?‘(r-l—l)}

(24)
where
_ e & @) 0 ]
qu:/ dw®p(z) - ‘1)2(37)
0 0 ppt(e)
Hpps = /0 dzd,(z) - Nyx(z). (25)

the expression is for layet)( Define a reflection matrig~; at  Similarly, the fields in layers:) with m < I can be expressed
the interfacez = —d; such that the reflection matrix multipliedas
by the downvyard-gomg component gives the upward-gomgA — R (). [eifi’mzm
components, i.e., mE _m _ .
+ eil&'m(hm—zm) . RUrn . eils’mhm] .

(20) n iky Y[ AT iK oz
Amyzekyy[NnH_(x)'_CAm ” .

+ Nm_(a:) . ¢ (e —2m) 'RUm . GiKmhm] .

(26)

By - [Cil_?’zz{ P (z0) + gl} =a.

Similarly, define another reflection matri®_; at = = —d;_;
such that

iK(hi—2]) T iKihe = | _ —iKih 7 _ _
Ry - [6 SmED o () T '041} =M O By imposing the boundary condition thak., = Agy1y, and
(21) A, = Ay41)y atz = —d,, we obtain the recursive relation
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between the reflection matrices as Thus, the tangential field components in layéy ¢an be
expressed as

EU(7‘+1) :{ F—JF Gim’“ -EUr ’ Gilzhﬂ h ' (E:v(rﬂ))_l

d
_ n _ L A :/ d’ Jp (') e vV ()
|:H - +H77 . GZBrhr . RUT . CZIST}LT:| c
-1

. |:eil_2’l|zl—zl’| 'E:I:(-T/) _i_eil_?lzl 54? _i_e—il_?lzl B;:|
d
ifi’rm}_l +/c dx' J,(«")e™ Y ] (x)

S — - _ T —
. |:ezlsl|4l EH '"(/}:t(.’ll'/) _i_ezlslzl s +te Kz /3l:|

'Hr(r-i—l)— }
' { I?_[M‘-l— + -E_[rr— ’ eil?rhr ’ -_RU’I’ - C

Horgnyy — [j— bk R eil_?rhrj|_

R, A _/ da! T (2 )eiFov
-(B,,(,, +1)) } @27) ¢ ] ) ]
W) - Bl E () 4N (2) - B g
Next, consider the fields generated by another line current +J_Vl_(a:) e iKum ./};}
J(7) = 218(x—1,)6(2 — 2,)c**+¥. From Maxwell’'s equations d
B, = 0 and D, satisfy +/ dxljy(xl)eikyy

: [ﬁlﬂ:(x) Rl g (o)

V2 o) e o) g+ wule)e) | Do) e Eon 7
“I‘Nl—l—(x) . ezlslzl A+ Nl_(a:) . e—zluzz . ﬁl:| (33)

= —iwpele™V§(x — ,)6(2 — 2,)

0 11 .,
+€a—$6 iw@ MY (2 — 10)6(2 — 2,). (28) wherea; and B, are given in (22), andy; and 3, have the
same forms except that. is replaced bﬁi
The solution to (28) is Next, impose the boundary conditions that the tangential

electric field vanishes on the strip surface to obtain an integral
equation with the surface current as the unknown variable.
To apply the Galerkin’'s method, we first choose a set of

basis functions to represemt,(z) and J,(z) on the strip
surface. Substitute the current distribution in terms of these
basis functions into the integral equation, then take the inner
where product of another set of weighting functions with the resulting
equation to form a determinantal equation. The dispersion

Eu(z0) relation is obtained by solving the determinantal equation.

m </>”(37o)

0 I1l. NUMERICAL RESULTS

Aa; = = Gikyy(i)t(-’lj) . C”—;’lz_zol : E:I:(xo) (29)

_qu;_ozf(j o) =T

(30) In Fig. 2, we show the phase constant of a microstrip line
on a segmented substrate. The results with a homogeneous
substrate [11] match reasonably well with our results in the
high-frequency range. The deviation in the low-frequency
range is because we model a laterally closed structure while

Substituting (29) into (13), we obtain

_ H, P B the structure in [11] is laterally open.
Ay = =N y(z) ¢ - &a(xo). (B1)  InFig. 3, we show the phase constant of a microstrip line on
Ey a substrate with a parabolic permittivity profile. The maximum

or minimum dielectric constart,,, occurs at the middle of the
When the line current source is located in layér ¢f a substrate. The curve with,, = 10 is that of a homogeneous
stratified medium, the field expressions are the same as ($0pstrate.
except that) is replaced byt. In Fig. 4, we show the phase constant of a microstrip line
A microstrip line located in layerl( can be perceived as aOn a substrate with a homogeneous dielectric constant and
superposition of line current source on the strig # < d as @ parabolic conductivity profile. The maximum or minimum
conductivity o,,, occurs at the middle of the substrate. The
_ ) ) ik phase constant at the low-frequency range increases as the
J(@,y) =@z (2) + §Jy(2)]Y6(z — 2o), conductivity increases. The slow-wave phenomenon is obvious
<z <d. (32) for ¢ = 10 U/m. The associated attenuation constant in
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Fig. 2. Normalized phase constant of a microstrip line on a segmentEdy. 4. Normalized phase constant of a microstrip line on a substrate with a
substrateq = 5 mm,d = 1 mm,w = 1 mm, * : results with a homogeneous parabolic conductivity profiler(z) = 4oma(a — x)/a?, a =5 mm,d = 1

layer ¢ = 0) in [11]. mm, w = 1 mm.
: . . v 0 - _
341 4 F 3
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Fig. 3. Normalized phase constant of a microstrip line on a substrate with
a parabolic permittivity profile, (z)/eo = 10 + 4(em — 10)z(a — x)/a?, Fig. 5. Attenuation constant of a microstrip line on a substrate with a

a=5mm,d=1mm,w=1mm. parabolic conductivity profile, all the parameters are the same as in Fig. 4.

Fig. 5 indicates that the loss is roughly proportional to thgf the odd mode tends to concentrate between the two strips,
conductivity at least in the range 0fl < o, < 10 3/m and hence the side walls have less effect on the odd mode than
decreases at low frequencies. on the even mode.

In Fig. 6, we show the phase constant of the even modeThe phase constant and the attenuation constant for two
of two symmetrically coupled microstrip lines on a substraigymmetrically coupled microstrip lines on a substrate with a
with a parabolic permittivity profile. The results with a ho-homogeneous permittivity and a parabolic conductivity profile
mogeneous substrate [11] are also shown for comparisame shown in Figs. 8 and 9. The slow-wave phenomenon is
The deviation between our results and those in [11] at lowbserved for both the even and the odd modes at low fre-
frequencies can be explained in the same way as for the singlencies, especially with higher conductivity. The attenuation
microstrip line. The phase constant for the corresponding oddnstant of the even mode is higher than that of the odd mode
mode is shown in Fig. 7. Our results and those in [11] matdiecause the electric field of the odd mode tends to concentrate
well in the low-frequency range because the field distributidmetween the two strips, while that of the even mode spreads to
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Fig. 6. Normalized phase constant of the even mode of two symmetricaftyy. 8. Normalized phase constant of two symmetrically coupled
coupled microstrip lines on a substrate with a parabolic permittivity profilgicrostrip lines on a substrate with a parabolic conductivity profile
er(7)/€0 = 10+4(em —10)2(a—2)/a?, a = 6.4 mm,d =1 mm,w =1 o(x) =doma(a —2)/a®, a =64 mm,d=1mm,w=1mm,s =04
mm, s = 0.4 mm, * : results with a homogeneous layey,(= 10) in [11]. mm. ( :0=0106/m,(----)06=10/m,(----):0=100/m.
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Fig. 7. Normalized phase constant of the odd mode of two symmetrically ¢
coupled microstrip lines on a substrate with a parabolic permittivity profilgsig. 9. Attenuation constant of two symmetrically coupled microstrip lines
all the parameters are the same as in Fig. 6. on a substrate with a parabolic conductivity profile, all the parameters are the
same as in Fig. 8_(___): even mode, (- - - ): odd mode.
a larger extent in the substrate. Hence, the electric field of the

even mode incurs more attenuation than that of the odd mode.
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