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Microstrip Lines on Substrates with Segmented
or Continuous Permittivity Profiles

Jean-Fu Kiang,Member, IEEE

Abstract—The propagation properties of microstrip lines on
a substrate with inhomogeneous permittivity and conductivity
profiles are analyzed. The eigenmodes in each inhomogeneous
layer are obtained by solving an eigen equation. These eigen-
modes are then used to formulate the Green’s function of the
stratified medium. An integral equation is next derived in terms
of the surface current on the strip. Galerkin’s method is then
applied to obtain a determinantal equation to be solved for
the propagation constant. The effect of several permittivity and
conductivity profiles are analyzed.

Index Terms—Dispersion relation, inhomogeneous substrate,
microstrip line, stratified medium.

I. INTRODUCTION

FOR MICROSTRIP lines deposited on a segmented sub-
strate, the expressions of potentials (quasi-TEM analyses)

or fields (full-wave approaches) in the substrate become more
complicated than the expressions in a homogeneous substrate.
For a substrate with a continuous permittivity profile, explicit
forms of eigenmodes are not available. Discretization ap-
proaches like finite difference method, finite element method,
or method of lines can be resorted to obtain the potential or
field distributions.

Using the quasi-TEM approximation, the proximity effect
of a substrate edge on the capacitance of a microstrip line
enclosed by a rectangular metal case has been studied [1], [2].
In [3], a spatial domain moment method is used to calculate
the capacitance of two microstrip lines separated by a notch
in the middle of the substrate. The notch serves to reduce
the coupling between these two lines. In [4], a conformal
mapping technique is derived to calculate the capacitance of
a stripline embedded in a layered medium with rectangular-
shape subdomains.

Using the full-wave approach, a method of lines has been
developed to analyze the propagation properties of microstrip
lines on a substrate of finite extent or on a substrate with
notches [5]. A laterally open structure can be reduced to a
closed one by using a coordinate transformation before the
method of lines is applied to solve the propagation constant [6].
In [7], another method of lines is used to study the propagation
properties of coplanar transmission lines on a semiconduc-
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tor substrate. The permittivity profile of the substrate is a
continuous function of a lateral coordinate.

In [8], microstrip lines on top of dielectric ridges are studied
for their propagation and coupling characteristics. The Green’s
function is derived using the mode-matching technique, and
an integral equation based on the current distribution on the
strip surface is solved for the propagation constant. A similar
approach with detailed derivation is given in [9] to solve a
class of problems with striplines or slotlines embedded in a
multilayered medium. The task to obtain the eigenmodes in
each layer is laborious in [8] and [9].

In all these works except [7], the permittivity profile in
each layer is assumed to be a piecewise constant function
of the lateral coordinate. The continuous permittivity profile
may occur when a microstrip line is deposited on a semicon-
ductor substrate which contains doping zones with a different
dielectric constant from that of the bulk substrate.

In this paper, a mode-matching technique is combined with
the integral equation method to study the propagation proper-
ties of a single and two symmetrically coupled microstrip lines
on a substrate. The permittivity profile of the substrate can
be a piecewise continuous function of the lateral coordinate.
First, the eigenmodes in each layer are obtained by solving a
symmetric eigenvalue matrix equation. Reflection matrices are
defined across the interfaces between two contiguous layers.
Green’s function is derived by inserting current dipoles in the
layered medium. An integral equation is then formulated to
express the tangential electric field in terms of the current on
the strip surface. Galerkin’s method is finally applied to solve
the integral equation for the propagation constant.

II. FORMULATION

In Fig. 1, we show the configuration of a microstrip line
embedded in a layer () of a stratified medium. The whole
structure is uniform in the direction. The dielectric constant
in each layer is a piecewise continuous function ofand is
independent of and . Two perfect electric conductor walls
are put at and to simplify the analysis.

First, we solve the eigenmodes in an inhomogeneous
medium which extends to infinity in the direction. The
normal flux components and satisfy the following
second-order ordinary differential equation:

(1)
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Fig. 1. Geometrical configuration of a microstrip line embedded in a strati-
fied medium consisting of inhomogeneous layers.

where . Assume that the waves propagate
in the direction with a propagation constant can be
expressed as

(2)

where is the eigensolution to

(3)

and is the corresponding eigenvalue. Choose one set of
basis functions with
where when and when . These
basis functions satisfy the orthonormality specification that

. The inner product is defined over the
interval . The eigenmode can be expressed
in terms of as

(4)

Substituting (4) into (3), and taking the inner product of
with the resulting equation

(5)

where

(6)

The eigenvalues and the corresponding eigenfunction
can be solved numerically from (5). Similarly, can

be expressed as

(7)

where is the eigensolution to

(8)

and is the corresponding eigenvalue. Choose another set
of basis functions with .
These basis functions satisfy the orthonormality specification
that . The eigenmode can be
expressed in terms of as

(9)

Substituting (9) into (8), and taking the inner product of
with the resulting equation, we have

(10)

where

(11)

The eigenvalues and the corresponding eigenfunction
can be solved numerically from (10). The eigenmodes
and are normalized such that

(12)

The and components can be expressed in terms of
and as [10]

(13)

where and are the th eigenmode components of
and , respectively.

Next, consider the fields generated by a line current
. From Maxwell’s equations

(14)

The solutions to (14) can be expressed in terms of the
eigenmodes of (3) and (8) as

(15)
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where

(16)

is a column vector with
is a column vector with

. is a diagonal
matrix with the th diagonal component being ,

is a diagonal matrix with the th diagonal
component being . and are related to the
eigenvalues and by , .

is a diagonal matrix . Substituting
(15) into (13), we obtain

(17)

where

(18)

where and are diagonal matrices with

and .
Next, assume that a line current is located in layer () of a

stratified medium, the fields in layer () can thus be expressed
as

(19)

where , the subscript indicates that
the expression is for layer (). Define a reflection matrix at
the interface such that the reflection matrix multiplied
by the downward-going component gives the upward-going
components, i.e.,

(20)

Similarly, define another reflection matrix at
such that

(21)

Then, and can be solved from (20) and (21) to be

(22)

Using the reflection matrices, the fields in layer () with

can be expressed as

(23)

By imposing the boundary condition that and
at , we obtain the recursive relation

between the reflection matrices as

(24)

where

(25)

Similarly, the fields in layer ( ) with can be expressed

as

(26)

By imposing the boundary condition that and
at , we obtain the recursive relation
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between the reflection matrices as

(27)

Next, consider the fields generated by another line current
. From Maxwell’s equations

and satisfy

(28)

The solution to (28) is

(29)

where

(30)

Substituting (29) into (13), we obtain

(31)

When the line current source is located in layer () of a
stratified medium, the field expressions are the same as (19)
except that is replaced by .

A microstrip line located in layer () can be perceived as a
superposition of line current source on the strip as

(32)

Thus, the tangential field components in layer () can be
expressed as

(33)

where and are given in (22), and and have the
same forms except that is replaced by .

Next, impose the boundary conditions that the tangential
electric field vanishes on the strip surface to obtain an integral
equation with the surface current as the unknown variable.
To apply the Galerkin’s method, we first choose a set of
basis functions to represent and on the strip
surface. Substitute the current distribution in terms of these
basis functions into the integral equation, then take the inner
product of another set of weighting functions with the resulting
equation to form a determinantal equation. The dispersion
relation is obtained by solving the determinantal equation.

III. N UMERICAL RESULTS

In Fig. 2, we show the phase constant of a microstrip line
on a segmented substrate. The results with a homogeneous
substrate [11] match reasonably well with our results in the
high-frequency range. The deviation in the low-frequency
range is because we model a laterally closed structure while
the structure in [11] is laterally open.

In Fig. 3, we show the phase constant of a microstrip line on
a substrate with a parabolic permittivity profile. The maximum
or minimum dielectric constant , occurs at the middle of the
substrate. The curve with is that of a homogeneous
substrate.

In Fig. 4, we show the phase constant of a microstrip line
on a substrate with a homogeneous dielectric constant and
a parabolic conductivity profile. The maximum or minimum
conductivity occurs at the middle of the substrate. The
phase constant at the low-frequency range increases as the
conductivity increases. The slow-wave phenomenon is obvious
for m. The associated attenuation constant in
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Fig. 2. Normalized phase constant of a microstrip line on a segmented
substrate,a = 5 mm,d = 1 mm,w = 1 mm, * : results with a homogeneous
layer (b = 0) in [11].

Fig. 3. Normalized phase constant of a microstrip line on a substrate with
a parabolic permittivity profile�r(x)=�o = 10 + 4(�m � 10)x(a� x)=a2,
a = 5 mm, d = 1 mm, w = 1 mm.

Fig. 5 indicates that the loss is roughly proportional to the
conductivity at least in the range of m and
decreases at low frequencies.

In Fig. 6, we show the phase constant of the even mode
of two symmetrically coupled microstrip lines on a substrate
with a parabolic permittivity profile. The results with a ho-
mogeneous substrate [11] are also shown for comparison.
The deviation between our results and those in [11] at low
frequencies can be explained in the same way as for the single
microstrip line. The phase constant for the corresponding odd
mode is shown in Fig. 7. Our results and those in [11] match
well in the low-frequency range because the field distribution

Fig. 4. Normalized phase constant of a microstrip line on a substrate with a
parabolic conductivity profile�(x) = 4�mx(a� x)=a2; a = 5 mm, d = 1

mm, w = 1 mm.

Fig. 5. Attenuation constant of a microstrip line on a substrate with a
parabolic conductivity profile, all the parameters are the same as in Fig. 4.

of the odd mode tends to concentrate between the two strips,
hence the side walls have less effect on the odd mode than
on the even mode.

The phase constant and the attenuation constant for two
symmetrically coupled microstrip lines on a substrate with a
homogeneous permittivity and a parabolic conductivity profile
are shown in Figs. 8 and 9. The slow-wave phenomenon is
observed for both the even and the odd modes at low fre-
quencies, especially with higher conductivity. The attenuation
constant of the even mode is higher than that of the odd mode
because the electric field of the odd mode tends to concentrate
between the two strips, while that of the even mode spreads to
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Fig. 6. Normalized phase constant of the even mode of two symmetrically
coupled microstrip lines on a substrate with a parabolic permittivity profile
�r(x)=�o = 10+4(�m�10)x(a�x)=a2; a = 6:4 mm,d = 1 mm,w = 1
mm, s = 0:4 mm, * : results with a homogeneous layer (�m = 10) in [11].

Fig. 7. Normalized phase constant of the odd mode of two symmetrically
coupled microstrip lines on a substrate with a parabolic permittivity profile;
all the parameters are the same as in Fig. 6.

a larger extent in the substrate. Hence, the electric field of the
even mode incurs more attenuation than that of the odd mode.

IV. CONCLUSION

We have applied a mode-matching technique and the in-
tegral equation method to study the propagation properties
of a single and two symmetrically coupled microstrip lines
embedded in a stratified medium where the permittivity and
conductivity profiles in each layer can be continuous func-
tions of the lateral coordinate. The phase constant and the
attenuation constant with various inhomogeneous profiles have
been obtained by this method. Slow-wave phenomenon is also
observed for structures with a lossy substrate.

Fig. 8. Normalized phase constant of two symmetrically coupled
microstrip lines on a substrate with a parabolic conductivity profile
�(x) = 4�mx(a � x)=a2; a = 6:4 mm, d = 1 mm, w = 1 mm, s = 0:4
mm. ( ): � = 0:1 =m, (- - - - ): � = 1 =m, (- - - - ): � = 10 =m.

Fig. 9. Attenuation constant of two symmetrically coupled microstrip lines
on a substrate with a parabolic conductivity profile, all the parameters are the
same as in Fig. 8. ( ): even mode, (-- - - ): odd mode.
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